Global Existence and Extinction of Weak Solutions to a Class of Semiconductor Equations with Fast Diffusion Terms

نویسنده

  • Bin Wu
چکیده

We consider the transient drift-diffusion model with fast diffusion terms. This problem is not only degenerate but also singular. We first present existence result for general nonlinear diffusivities for the Dirichlet-Neumann mixed boundary value problem. Then, the extinction phenomenon of weak solutions for the homogeneous Dirichlet boundary problem is studied. Sufficient conditions on the extinction and decay estimates of solutions are obtained by using L-integral model estimate method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight

‎This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight‎. ‎We apply the variational methods to prove the existence of ground state solution‎.

متن کامل

Porous Media Equations, Fast Diffusions Equations and the Existence of Global Weak Solution for the Quasi-solutions of Compressible Navier-stokes Equations

In [3, 4, 5], we have developed a new tool called tquasi solutions which approximate in some sense the compressible Navier-Stokes equation. In particular it allows to obtain global strong solution for the compressible Navier-Stokes equations with large initial data on the irrotational part of the velocity (large in the sense that the smallness assumption is subcritical in terms of scaling, it t...

متن کامل

A novel existence and uniqueness theorem for solutions to FDEs driven by Lius process with weak Lipschitz coefficients

This paper we investigate the existence and uniqueness of solutions to fuzzydierential equations driven by Liu's process. For this, it is necessary to provideand prove a new existence and uniqueness theorem for fuzzy dierential equationsunder weak Lipschitz condition. Then the results allows us to considerand analyze solutions to a wide range of nonlinear fuzzy dierential equationsdriven by Liu...

متن کامل

Reverse Smoothing Effects, Fine Asymptotics, and Harnack Inequalities for Fast Diffusion Equations

We investigate local and global properties of positive solutions to the fast diffusion equation ut = Δum in the good exponent range (d− 2)+/d < m < 1, corresponding to general nonnegative initial data. For the Cauchy problem posed in the whole Euclidean spaceRd, we prove sharp local positivity estimates (weak Harnack inequalities) and elliptic Harnack inequalities; also a slight improvement of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008